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Our objective in this paper is to present two new overlapping finite elements: a pyramid element and a
prism element. These elements are useful when meshing general three-dimensional geometries in pro-
viding the possibility to transition between other overlapping and traditional elements. Both new over-
lapping elements are compatible with overlapping brick and tetrahedral elements, and when used as
coupling elements also with the traditional finite elements. We theoretically formulate the two new
overlapping finite elements, show that only the rigid body modes correspond to zero eigenvalues (hence
the elements contain no spurious zero energy mode), show that the patch test is passed, and test the ele-
ments for their convergence behavior and condition numbers. We also show that the elements are quite
insensitive to element distortions and revisit the imposition of displacement boundary conditions.
Finally, we give some illustrative applications using the AMORE scheme in which also the new overlap-
ping elements are employed.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

In finite element analysis, the discretization of complex geome-
tries of the analysis domain often requires the use of geometrically
distorted elements. However, element distortions can lead to poor
predictive capability of the elements and hence insufficient accu-
racy of the solution [1,2]. The overlapping finite elements we pro-
posed show great distortion-insensitivity and can be effectively

used in the AMORE scheme for ‘‘automatic meshing with overlap-

ping and regular elements” [3–8]. In the AMORE scheme, the inte-
rior of the analysis domain is first filled with undistorted
traditional elements to by-pass the loss of accuracy due to element
distortions [1]. The regions that are not filled with the traditional
elements are then discretized using overlapping finite elements
which exhibit only a small loss of accuracy when distorted. The
aim in this judicious use of both the traditional finite elements
and overlapping elements is to perform the analysis effectively
while expending much less effort on meshing.

We recently proposed an enhanced overlapping finite element
scheme [8]. The enhanced formulation enables the efficient calcu-
lation of the element stiffness matrices and more importantly pro-
vides a positive definite stiffness matrix when used with the
polynomial bases considered in Ref. [8]. We recall that the positive
definiteness can be absent in other generalized finite element
methods based on polynomial enrichments [9,10]. While we gave
the details for the enhanced triangular, quadrilateral, tetrahedral,
and brick overlapping elements, the same formulation can also
be applied to establish other elements.

We want to use the overlapping finite element method effec-
tively for complex geometries of analysis domains and various dis-
placement boundary conditions. Hence in this paper we suggest
important further ingredients for the method. First, we introduce
a pyramid overlapping element and then a prism overlapping ele-
ment. These elements allow more flexibility for the AMORE
scheme to mesh a complex analysis domain. Furthermore, they
are quite effective even when used alone in analyses. Second, we
study the use of coupling elements for imposing the Dirichlet (dis-
placement) boundary conditions. This method was already used in
our previous paper [4], but in this paper we further show its effec-
tiveness. This technique is particularly useful when a Dirichlet con-
dition is imposed on a curved boundary. We have also imposed the
displacement boundary conditions by another scheme, namely
appropriately defining nodal functions on the boundaries [8]. How-
ever, we then found that the strategy of Ref. [8] does not lead to
good convergence behavior when the boundary is curved. The
use of coupling elements is effective for imposing various displace-
ment boundary conditions since it allows to impose the conditions
as in the traditional finite element method [1].
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Fig. 1. Reference element used for the geometry interpolation of the pyramid
overlapping element.

Table 1
Numerical integration rules used for the pyramid overlapping element; the Gauss
quadrature rule is used along each natural coordinate [1]; the number of integration
points for the t-direction is given with the rules for integrating over the respective
plane of the r- and s-directions, see Fig. 2.

Basis t-direction r- and s-directions

Linear 3 2 � 2
3 � 3
3 � 3

Bilinear 4 2 � 2
3 � 3
3 � 3
4 � 4

Quadratic 4 2 � 2
3 � 3
4 � 4
4 � 4

Fig. 2. Locations of the numerical integ

Fig. 3. Pyramid elements used for the zero energy mode test; the Cartesian coordinates ðx
pyramid element.
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In the following section, we first introduce the new pyramid
and prism overlapping elements and discuss their stability. There-
after, we revisit the coupling element formulation and show how
the formulation is used for imposing the displacement boundary
conditions also on curved boundaries. In Section 3, we provide
numerical examples to illustrate the new features of the overlap-
ping element approach. Finally, in Section 4 we provide our con-
cluding remarks.

2. New ingredients for the overlapping finite element method

We present herein the pyramid and prism overlapping ele-
ments which are stable and pass the patch test when used with
proper numerical integration schemes. The coupling element for-
mulation is revisited, and its effectiveness in prescribing a Dirichlet
condition on a curved boundary is described.

2.1. The pyramid overlapping finite element

We use the approach introduced in our previous work [8] to for-
mulate the pyramid overlapping element. A displacement compo-
nent (e.g., x-displacement) is constructed as

u xð Þ ¼
X5
I¼1

hIwI ð1Þ

where the hI are the traditional pyramid element functions [1]
and wI is the field of the polyhedral element corresponding to node
I. The polyhedral element using node I is defined to correspond to
all elements that share node I. The field wI is interpolated as

wI ¼
X5
K¼1

/I
K uK ð2Þ
ration points provided in Table 1.

; y; zÞ of nodes are given; units in m; (a) Undistorted pyramid element; (b) Distorted



Table 2
Zero energy mode test for the pyramid overlapping elements; the eigenvalues k i are given in ascending order; the first, second, and third rows correspond to the use of the linear,
bilinear, and quadratic basis, respectively; in all cases, we regard the very small values of k 1, k 2, . . ., and k 6 as zeros.

element k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8

Undistorted �1.55 � 10�7 �8.86 � 10�8 �1.47 � 10�8 8.87 � 10�8 2.22 � 10�7 3.41 � 10�7 6.37 � 104 9.91 � 104

�3.58 � 10�7 �3.86 � 10�8 �1.90 � 10�8 6.72 � 10�8 1.67 � 10�7 3.62 � 10�7 3.74 � 102 4.74 � 102

�4.07 � 10�7 �1.85 � 10�7 �5.70 � 10�8 4.47 � 10�8 7.55 � 10�8 1.54 � 10�7 7.73 � 100 7.73 � 100

Distorted �3.04 � 10�7 �1.71 � 10�7 �9.27 � 10�8 �2.25 � 10�8 1.23 � 10�8 3.30 � 10�7 5.82 � 104 6.99 � 104

�2.71 � 10�7 �2.09 � 10�7 �7.04 � 10�8 �1.39 � 10�8 1.74 � 10�7 2.04 � 10�7 4.49 � 102 5.96 � 102

�3.37 � 10�7 �2.03 � 10�7 �1.21 � 10�7 �2.77 � 10�8 1.40 � 10�7 3.43 � 10�7 6.52 � 100 7.09 � 100

Fig. 4. Reference element for the geometry interpolation of the prism overlapping
element.

Table 3
Numerical integration rules used for the prism overlapping element; the rules given
in Ref. [11] are used for the integrations over the r- and s-directions while the Gauss
quadrature rule is employed for the t-direction integration.

Basis r- and s- direction t-direction

Linear 6 3
Bilinear 9 4
Quadratic 12 4

Fig. 5. Prism elements used for the zero energy mode test; the Cartesian
coordinates ðx; y; zÞ of nodes are given; units in m; (a) Undistorted prism element;
(b) Distorted prism element.

Table 4
Zero energy mode test for the prism overlapping element; the eigenvalues k i are given in
linear, bilinear, and quadratic basis, respectively; in all cases, we regard the very small va

element k 1 k 2 k 3 k 4

Undistorted �4.51 � 10�9 2.46 � 10�8 3.24 � 10�8 9.50
�1.92 � 10�7 �1.82 � 10�7 �5.12 � 10�8 �8.28
�1.36 � 10�7 �1.40 � 10�8 3.17 � 10�8 5.29

Distorted �4.22 � 10�8 1.24 � 10�9 2.66 � 10�8 5.85
�1.09 � 10�7 �3.26 � 10�8 4.61 � 10�9 9.65
�6.64 � 10�8 �4.16 � 10�8 2.72 � 10�8 1.08
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where uK is the nodal function at node K and /I
K are partition of

unity functions satisfying
P5

K¼1/
I
K ¼ 1. The function /I

K is defined
using the nodal values at the element vertices and at the mid-
points of the element sides of the traditional pyramid element with
13 nodes.

/I
K ¼

X13
i¼1

ĥi /̂
I

Ki ð3Þ

where the ĥi are the shape functions of the traditional finite ele-

ment. The values of /̂
I

Ki are determined using the parameter b, see
Appendix A2.

The nodal function uK can be any suitable function effective for
the simulation of the physics of the problem considered (e.g.,
trigonometric functions [5]), but in this paper a polynomial basis
is used as in Ref. [8]. In three-dimensional analyses, we use

uK ¼ aK1 þ aK2
x� xKð Þ

h
þ aK3

y� yKð Þ
h

þ aK4
z� zKð Þ

h
þ . . . ð4Þ

where the xK ¼ ðxK ; yK ; zKÞ are the Cartesian coordinates of node
K, the aKi are unknown variables, and h is the scaling length given
by

h ¼ max
J2M

jjxJ � xK jj=2 ð5Þ

where M is the set of the element vertices contained in the
polyhedral element pertaining to node K [8].

The interpolation Eq. (1) can be expressed as

u xð Þ ¼
X5
I¼1

hIwI ¼
X5
I¼1

hI

X5
K¼1

/I
K uK

 !
¼
X5
K¼1

X5
I¼1

hI /
I
K

 !
uK

¼
X5
K¼1

qK uK ð6Þ

where the partition of unity
P5

K¼1qK ¼ 1 is satisfied. As for the
prior overlapping elements proposed in Ref. [8], algebraic manipu-
lations give

qK ¼
X5
I¼1

hI /
I
K ¼

X5
I¼1

hI

X13
i¼1

ĥi /̂
I

Ki

 !
¼ hK þ b

X
J

hJ � hK
� �

ĥJK ð7Þ

where J indicates a node (vertex) directly connected to node K

by an element edge and ĥJK is the element shape function corre-
sponding to the mid-side point between nodes J and K.
ascending order; the first, second, and third rows are corresponding to the use of the
lues of k 1, k 2, . . ., and k 6 as zeros.

k 5 k 6 k 7 k 8

� 10�8 2.10 � 10�7 2.84 � 10�7 2.31 � 104 2.58 � 104

� 10�9 3.04 � 10�8 1.92 � 10�7 8.66 � 100 1.44 � 101

� 10�8 9.94 � 10�8 1.98 � 10�7 4.60 � 10�1 1.03 � 100

� 10�8 8.64 � 10�8 1.72 � 10�7 2.17 � 104 2.69 � 104

� 10�8 1.66 � 10�7 1.71 � 10�7 3.52 � 101 3.64 � 101

� 10�7 1.56 � 10�7 2.26 � 10�7 1.10 � 100 1.28 � 100
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The geometry of the element is interpolated using the functions
hI . From the functions hI of the nodes on the base, we linearly vary
the bilinear interpolation functions along the t-direction, see Fig. 1.
See Appendix A1 for the interpolation functions.
Fig. 6. Description of coupling elements; black and red nodes indicate finite
element and overlapping element nodes, respectively; coupling elements are the
elements having both finite and overlapping element nodes. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Placement of finite element nodes on the boundary with a displacement
boundary condition; the nodal values at finite element nodes 1 and 2 and the nodal
function at overlapping element node 3 are shown.

Fig. 8. Comparison of two methods imposing the zero-displacement boundary conditi
appropriate polynomials; (c) the use of the coupling element.

4

The pyramid overlapping element is compatible with the brick
and the tetrahedral overlapping elements when the same b value is
used, see Ref. [8] for the two elements.

Considering the zero energy mode test for the new pyramid ele-
ment, we calculate the eigenvalues of the stiffness matrix of an
unsupported element. An unsupported element denotes an element
for which all degrees of freedom (dofs) are free. A three-
dimensional unsupported element should exhibit only six zero
eigenvalues (which correspond to the rigid body modes) if no spu-
rious mode exists [1]. The numerical integration rules suggested in
Table 1 and Fig. 2 are used. We consider the undistorted and dis-
torted elements illustrated in Fig. 3. Young’s modulus = 2� 109

Pa, Poisson’s ratio = 0.3, and b ¼ 0:03 are used in the test. As shown
in Table 2, the elements pass the zero energy mode test. Note that
the numerical round-off error prevents it to obtain exact zero
eigenvalues. We also note that the mesh of the pyramid overlap-
ping element passes the patch test when used with the suggested
integration rules.

2.2. The prism overlapping finite element

The prism overlapping finite element is formulated as the pyra-
mid overlapping element. A displacement component in the prism
overlapping element is interpolated as

u xð Þ ¼
X6
I¼1

hIwI ð8Þ
on; (a) the analysis domain is shown with the boundary condition; (b) the use of

Fig. 9. Distributions of the x-displacement along the straight edge 1–2 in Fig. 8
calculated using the two different methods to impose the boundary condition; the
labels ‘‘polynomial” and ‘‘coupling” represent the use of the appropriate polyno-
mials and the coupling element, respectively.
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where the hI are the shape functions of the 6-node traditional
prism finite element and wI is the field of the polyhedral element
of node I. The field wI is given as

wI ¼
X6
K¼1

/I
K uK ð9Þ

where the uK are nodal polynomials and /I
K satisfy

P6
K¼1/

I
K ¼ 1.

We use

/I
K ¼

X15
i¼1

ĥi /̂
I

Ki ð10Þ

where the ĥi are the shape functions of the traditional prism

finite element with mid-side nodes and /̂
I

Ki are given using the
parameter b, see Appendix A2. We note that the prism element
Fig. 10. Adhoc problem; (a) Description of the analysis domain; units in m; the zero-disp
Poisson’s ratio = 0:3 are used; the body force calculated using Eq. (16) is imposed; (b)
contains six pyramid elements; (c) Meshes using prism overlapping elements.

5

functions also satisfy u xð Þ ¼ P6
K¼1

qKuK with
P6
K¼1

qK ¼ 1 and

qK ¼
X6
I¼1

hI /
I
K ¼

X6
I¼1

hI

X15
i¼1

ĥi /̂
I

Ki

 !

¼ hK þ b
X
J

hJ � hK
� �

ĥJK ð11Þ

where J and ĥJK are defined as in Eq. (7). The prism overlapping
element is also compatible with both the brick and tetrahedral
overlapping elements [8] provided that the same b value is used.

The geometry of the element is interpolated using the reference
element of the 6-node prism finite element, see Fig. 4. The interpo-
lation functions are given in Appendix A1.

As with the other elements, for the new prism element, we also
conduct the zero energy mode test. For the numerical integration,
lacement boundary condition is imposed on y ¼ �1; Young’s modulus = 200GPa and
Meshes using pyramid overlapping elements; as illustrated, a hexahedral domain

KJ Bathe
Highlight
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we use the rules given in Table 3 over the natural coordinates
shown in Fig. 4. The undistorted and distorted elements shown
in Fig. 5, also unsupported, are employed in the test. We confirm
that the elements pass the test only exhibiting six zero eigenval-
ues, see Table 4. Again, Young’s modulus = 2� 109 Pa, Poisson’s
ratio = 0.3, and b ¼ 0:03 are used in the test.

As shown above, no spurious mode is found in the new pyramid
and prism overlapping elements as for the overlapping elements
proposed in Ref. [8].
2.3. Coupling element formulation

The coupling element was developed to connect a traditional
finite element with an overlapping finite element [3]. Consider
the mesh shown in Fig. 6. We see that coupling elements are used
for the transition from the finite element mesh to the overlapping
element mesh and the coupling elements have both finite element
and overlapping element nodes. A displacement component in the
coupling element is formulated as
Fig. 11. Adhoc problem solved using the new pyramid overlapping element with the quadratic basis; (a) Convergence of the solutions; (b) Condition number with mesh
refinements.
Fig. 12. Adhoc problem solved using the new prism overlapping element with the qu
refinements.

6

u xð Þ ¼PN
I¼1

hIwI

wI ¼
a for I 2 KFEP

K2KOFE
/I

K uK þPK2KFE
/I

Ka for I 2 KOFE

(

a ¼ PN
K¼1

hK aK1

ð12Þ

where KOFE and KFE are the sets of overlapping and traditional
element nodes, respectively, N is the number of nodes (vertices)
of the element, and aK1 is the traditional nodal value when node
K is a finite element node and the constant nodal function value
when node K is an overlapping element node.

2.4. Imposition of the Dirichlet boundary conditions

Here we show how coupling elements can be used in the over-
lapping finite element method to impose the displacement bound-
ary conditions. Consider the analysis domain with a displacement
boundary condition shown in Fig. 7. We set the nodes on the
adratic basis; (a) Convergence of the solutions; (b) Condition number with mesh
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boundary to be finite element nodes and the other nodes to be over-
lapping element nodes; therefore, the elements along the bound-
ary become coupling elements. We see that along the boundary
the displacement interpolation is equal to the finite element inter-
polation. Considering the x-displacement interpolation along edge
1–2 in Fig. 7, we obtain with the triangular coupling element [8]

uj1�2 ¼ h1w1 þ h2w2 þ h3w3 ð13Þ
Fig. 13. (a) Description of the slender beam problem; the beam is subject to the shea
Parallelogram mesh using pyramid overlapping elements; (c) Trapezoidal mesh using
elements; (e) Trapezoidal mesh using prism overlapping elements; the length e represent
(b) and (c) are given by the mean of the physical coordinates of the respective surround

Table 5
Normalized y-direction displacements obtained using the 5-node pyramid and 6-node pri

5-node pyramid
(948 dofs)

e = 0 m 0.1

parallelogram 0.9779 0.9717
trapezoidal 0.9779 0.9731

6-node prism
(768 dofs)

0 0.1

parallelogram 0.9824 0.9829
trapezoidal 0.9824 0.9798

Table 6
Normalized y-direction displacements obtained using the 5-node pyramid and 6-node pri

5-node pyramid
(948 dofs)

e = 0 m 0.1

parallelogram 0.9850 0.9846
trapezoidal 0.9850 0.9846

6-node prism
(768 dofs)

0 0.1

parallelogram 0.9864 0.9874
trapezoidal 0.9864 0.9851
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Provided that nodes 1 and 2 are finite element nodes, we use
w1 ¼ w2 ¼ h1 a11 þ h2 a21 þ h3 a31. Given that h3 ¼ 0 on edge 1–2,
Eq. (13) becomes

uj1�2 ¼ h1 þ h2ð Þ h1 a11 þ h2 a21ð Þ ¼ h1 a11 þ h2 a21 ð14Þ
which is the traditional finite element interpolation at the

boundary. Hence we can simply impose a displacement boundary
condition as usually done in the finite element method. Therefore,
all types of the displacement boundary conditions used in the tra-
ditional finite element method can directly be imposed in the over-
r force Fy ¼ �1N; Young’s modulus = 107 Pa and Poisson’s ratio = 0.3 are used; (b)
pyramid overlapping elements; (d) Parallelogram mesh using prism overlapping
s the extent of distortion; the physical coordinates of an inner node in the meshes of
ing eight nodes; lengths in m.

sm overlapping finite elements; the quadratic basis and b ¼ 0:03 are used.

0.2 0.3 0.4

0.9654 0.9612 0.9570
0.9676 0.9638 0.9601

0.2 0.3 0.4

0.9835 0.9847 0.9865
0.9766 0.9738 0.9725

sm overlapping finite elements; the quadratic basis and b ¼ 0:01 are used.

0.2 0.3 0.4

0.9841 0.9834 0.9825
0.9841 0.9834 0.9826

0.2 0.3 0.4

0.9884 0.9895 0.9907
0.9836 0.9817 0.9803



Fig. 14. Description of the shaft problem; the inner surface of the shaft is fixed to the circular rod, and the shown tractions are applied; Young’s modulus =200GPa, Poisson’s
ratio =0:3, and plane strain conditions are considered; lengths in m.

Fig. 15. Meshes used for the shaft problem; N represents the number of element layers along the radial direction; for the convergence test we use N = 3, 6, 12, and 24; the
mesh refined uniformly.

Fig. 16. Convergence of the strain energy obtained using two different schemes to
impose the boundary condition; the label ‘‘polynomial” represents the scheme that
uses appropriate nodal polynomials, and the label ‘‘coupling” denotes the use of
coupling elements.

S. Lee and K.J. Bathe Computers and Structures 268 (2022) 106813
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Fig. 17. Description of the plate problem; the plate is subjected to a uniform
torsion; the boundary of the hole is on rollers; Young’s modulus =200GPa, Poisson’s
ratio =0:3, and plane stress conditions are considered; lengths in m.
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lapping finite element method using the coupling element. This is
not the case with the previously used scheme [8] where we utilize
appropriate nodal local coordinates and nodal functions to impose
the boundary conditions.

To compare the previous and new schemes, we consider the
imposition of the zero-displacement boundary condition on a
two-dimensional arc-shaped boundary, see Fig. 8(a). As shown in
Fig. 8(b) where the 4-node overlapping element, with overlapping
nodes, is used on the boundary [8], the previous scheme introduces
nodal local coordinates that are perpendicular to the tangential
direction of the boundary. Considering the x-displacement interpo-
lation along edge 1–2 in Fig. 8(b) and the use of the linear basis, we
use the appropriate nodal functions u1 ¼ a12r1, u2 ¼ a22r2 and
obtain the x-displacement of

uj1�2 ¼ q1u1 þ q2u2 þ q3u3 þ q4u4

¼ q1u1 þ q2u2

¼ q1a12r1 þ q2a22r2

ð15Þ

where we use q3 ¼ q4 ¼ 0 along edge 1–2. We notice that Eq.
(15) does not give the zero x-displacement at all points on the edge
1–2. For example, Fig. 9 shows the x-displacement field along edge
1–2 when we assume a12 ¼ a22 ¼ 1 with b ¼ 0:1. We notice the x-
displacement is zero only at the boundary nodes when the appro-
priate polynomials are used whereas the use of the coupling ele-
ment shown in Fig. 8(c) enables the exact displacement imposition.
Fig. 18. Meshes used to solve the plate problem; (a) AMORE mesh using the
quadratic basis and b ¼ 0:01 (2,430 dofs); red nodes indicate overlapping element
nodes; (b) Traditional mesh using the 4-node finite element with incompatible
modes (2,238 dofs). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 7
Numerical results for the plate problem; the reference solutions for strain energy,
maximum von Mises stress, maximum x-displacement (umax), and minimum y-
displacement (vmin) are 3.423 � 10�4 J, 2.158 kPa, 7.719 � 10�5 mm, and
�3.627 � 10�5 mm, respectively; all values are the normalized.

mesh strain
energy

maximum von
Mises stress

umax vmin

Traditional
(2,238 dofs)

0.9972 0.9194 0.9966 0.9984

AMORE
(2,430 dofs)

0.9934 0.9594 0.9954 0.9954
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3. Illustrative analyses

In this section, we first numerically investigate the convergence
rate, conditioning, and distortion sensitivity of each new element.
Thereafter, numerical examples using coupling elements to impose
the Dirichlet conditions are provided. We also show the use of the
new overlapping elements in the AMORE scheme and their
effectiveness.

3.1. An adhoc problem

First, we solve a linear static adhoc problem using the new
pyramid overlapping element with the quadratic basis. The analy-
sis domain and boundary condition used are shown in Fig. 10(a),
see Refs. [8,12]. The domain is subject to a body force, and the body
force is calculated using the displacements

u ¼ 1� x2
� �2 1� y2

� �2 1� z2
� �2ey cos xð Þ sin yð Þ cos zð Þ

v ¼ 1� x2
� �2 1� y2

� �2 1� z2
� �2ey sin xð Þ cos yð Þ cos zð Þ

w ¼ 1� x2
� �2 1� y2

� �2 1� z2
� �2ey cos xð Þ cos yð Þ sin zð Þ

ð16Þ

Therefore Eq. (16) is the exact solution of the problem. The solu-
tion convergence and the conditioning of the governing equations
are examined with the meshes using N = 2, 4, 8, 16 where N is the
number of elements per side of the analysis domain, see Fig. 10(b).
Fig. 19. von Mises stress fields; (a) Reference solution; (b) Solution obtained using
the traditional mesh; (c) Solution obtained using the AMORE mesh.



Fig. 20. Absolute error fields of the von Mises stress; (a) Traditional mesh; (b)
AMORE mesh.

Fig. 21. Description of the patch test; Young’s modulus = 100Pa and Poisson’s
ratio = 0:3 are considered; the analysis domain is subject to the tractions of
txx ¼ tyy ¼ tzz ¼ 1Pa, txy ¼ tyx ¼ 1Pa, tyz ¼ tzy ¼ 2Pa, and tzx ¼ txz ¼ 3Pa; the mini-
mum displacement boundary conditions are imposed at nodes P, Q, and R in order
to remove rigid body modes; lengths in m.

Fig. 22. (a) AMORE mesh used for the patch

S. Lee and K.J. Bathe Computers and Structures 268 (2022) 106813
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The zero-displacement boundary condition is imposed using
appropriate nodal polynomials on the boundary [8] (i.e., using
the ‘‘previous” scheme referred in Section 2.4). We note that for
this problem the previous scheme is giving more accurate results
because overlapping nodes with polynomials are used on the
boundary and the scheme imposes the boundary condition exactly.
In Fig. 11, the strain energy error and the condition number of the
stiffness matrix are given with respect to the number of degrees of
freedom (dofs) used. We note that E and Eh are the reference and
predicted strain energy, respectively. The problem is also solved
using the 27-node brick finite element for comparison. The results
using the new pyramid element show convergence rates well
agreeing with theory [7], and the condition numbers are reason-
able and tend to slightly decrease with mesh refinements. A smal-
ler b gives a faster convergence but an increased condition number.
We described this trend also when using our earlier published
enhanced overlapping elements [8].

The prism overlapping element with the quadratic basis is also
tested in the same way using the meshes shown in Fig. 10(c).
Fig. 12 illustrates that the use of new prism element results also
into good convergence rates. The resulting condition numbers are
larger than those of the new pyramid element for about the same
number of dofs but are still reasonable. The trends regarding the
use of b are like those found when using the new pyramid element.

3.2. A slender beam problem

The distortion sensitivities of the new elements are studied
using the slender beam problem shown in Fig. 13(a), see Refs.
[8,13]. We solve for the y-displacement at point P and consider
the parallelogram and trapezoidal distortions described in
Fig. 13. The reference solution is �0.1081 m. The pyramid and
prism overlapping elements using the quadratic basis are used
with b ¼ 0:03 and 0:01. As in the previous adhoc problem, the
boundary condition is imposed using appropriate nodal polynomi-
als on the boundary. Both new elements provide quite accurate
solutions regardless of ‘‘e” which represents the degree of the ele-
ment distortion, see Table 5 and Table 6. We see that the use of the
smaller b provides more accurate displacement predictions which
are also less sensitive to the mesh distortions.

3.3. A shaft problem with the zero-displacement boundary condition

We now consider the use of coupling elements for imposing the
zero-displacement boundary condition on a curved boundary. We
solve the problem illustrated in Fig. 14 (see Ref. [4]) and employ
the 4-node quadrilateral overlapping element [8] using the quad-
ratic basis with b ¼ 0:01. The zero-displacement boundary condi-
tion is imposed by setting the nodes on the boundary to be finite
element nodes; therefore, the elements on the boundary are cou-
test; (b) AMORE mesh partially shown.



Fig. 23. Three dimensional bracket problem solved using the AMORE scheme; Young’s modulus = 200GPa and Poisson’s ratio = 0:3 are considered; (a) Dimensions of the
bracket; lengths in mm; (b) the fixed boundary condition is imposed on the cylindrical surface of the indicated hole; the surface traction of f y ¼ 1kPa and f z ¼ �1kPa is
applied on the surface marked with blue lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1 We use the numerical 11-point integration scheme given in Ref. [8] for the
tetrahedral overlapping element with the linear basis but need to note that the
correct eigenvalues of the free element (not given here) for the linear and bilinear
bases are slightly different from those given in Ref. [8]. The important conclusions,
however, that the elements contain no spurious modes still hold.
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pling elements. We use the meshes described in Fig. 15. For com-
parison, we also impose the boundary condition using appropriate
nodal polynomials on the boundary [8]. We saw in Section 2.4 that
the use of appropriate polynomials cannot exactly impose the
zero-displacement boundary condition on curved boundaries. The
results for the problem considered now are given in Fig. 16, and
compared to the results obtained using a fine mesh of 9-node finite
elements (491,520 dofs). We see that the use of appropriate poly-
nomials does not lead to monotonic convergence unlike using the
coupling element on the boundary. Although the quadratic basis is
employed, the convergence rate reached using the coupling ele-
ment is about �1 because the coupling element is only complete
up to degree 1.

3.4. A plate problem with a roller boundary condition

Next we consider the use of coupling elements to impose a
roller boundary condition. The plate problem shown in Fig. 17 is
solved using AMORE and traditional meshes, as described in
Fig. 18. The problem considered here is adapted from the problem
in Ref. [7]. In the AMOREmesh, the nodes on the boundary with the
roller boundary condition are finite element nodes. The overlap-
ping elements presented in Ref. [8] are used with the quadratic
basis and b ¼ 0:01, and the incompatible mode element is
employed for the traditional elements [1]. A very fine mesh of
the 9-node element (347,518 dofs) is used to obtain the reference
solution. As shown in Table 7, both the AMORE and traditional
meshes offer reasonable predictions for the strain energy and dis-
placements. However, the AMORE mesh provides a more accurate
von Mises stress prediction. We also see from Fig. 19 and Fig. 20
that the AMORE mesh offers a more accurate stress prediction
compared with the traditional mesh. Note that we use similar
numbers of dofs for the meshes.

3.5. A patch test for an AMORE mesh in 3D

Here, we perform a patch test using an AMORE mesh. The prob-
lem described in Fig. 21 is solved using the mesh shown in Fig. 22.
An 8-node finite element is located in the middle of the mesh, and
the pyramid and tetrahedral coupling elements are used to link the
11
finite element with the outer layers of overlapping finite elements.
The 4-node tetrahedral elements are formulated as in Ref. [8]1. The
linear basis and b ¼ 0:03 are used. The AMORE mesh passes the
patch test, exactly reproducing the constant stress state, and also
when incompatible modes are added to the 8-node finite element.

3.6. A bracket problem solved using the AMORE scheme

Finally, we solve the bracket problem shown in Fig. 23 using the
AMORE scheme. We use the AMORE mesh shown in Fig. 24 where
the new elements are utilized to discretize the regions near curved
boundaries and the elements presented in Ref. [8] are used. The
linear basis and b ¼ 0:01 are employed in the mesh. Note that
the prism coupling elements in the mesh are for imposing the
zero-displacement boundary condition and the pyramid coupling
elements merge the mesh of incompatible mode elements and
the mesh of tetrahedral overlapping elements. For comparison,
the use of the traditional mesh shown in Fig. 24 is also considered.

The AMORE and traditional meshes give the normalized strain
energy of 0.98 and 0.97, respectively. The reference strain energy
is 2:885� 10�9 J which is obtained using a fine mesh of 10-node
tetrahedral finite elements (829,215 dofs). The y-direction dis-
placement and von Mises stress along Line 1 (see Fig. 23(b)) are
computed. As shown in Fig. 25, both meshes provide reasonable
displacement predictions while the AMORE mesh more accurately
captures the sudden change in stress gradient. We further examine
the von Mises stress distribution on the bracket surfaces, see
Fig. 26. We see that the AMORE mesh gives a better stress
prediction.
4. Concluding remarks

We proposed two new overlapping finite elements: a pyramid
element and a prism element. The elements have been formulated



Fig. 24. Meshes used to solve the three dimensional bracket problem; (a) AMORE mesh using the linear basis and b ¼ 0:01 (26,370 dofs); the pyramid coupling elements used
in the mesh are shown in the zoomed image with asterisk; (b) Traditional mesh using the incompatible 8-node finite element and the 6-node prism finite element (19,095
dofs); the fillet of the bracket is discretized using the 6-node prism finite element.
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using the theory given in Ref. [8] and are valuable in their use of
general meshing of complex geometries.

We have studied the properties of the elements regarding sta-
bility and convergence, the condition numbers of solutions, and
their insensitivity to element distortions. We also have given the
results of illustrative solutions, including the use of the AMORE
solution scheme. In addition, we revisited how to best impose dis-
placement boundary conditions when overlapping finite elements
are used and obtained new insights.

Based on our experiences, the use of overlapping finite elements
shows significant advantages over the use of traditional finite
elements, but further research is required for their general applica-
tions. We considered only linear static analyses and wave propaga-
tion solutions [5]. In addition, other dynamic solutions should be
12
considered, and the use and further development of overlapping
finite elements should be pursued for the general nonlinear analy-
sis of structures and solids, heat transfer and multiphysics prob-
lem. Finally, also effective meshing schemes for the specific use
of the AMORE procedure are needed, and the pyramid and prism
elements presented in this paper should be of particular value in
such schemes.
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Fig. 25. Numerical predictions along Line 1; (a) y-direction displacement; (b) von Mises stress obtained using the averaged nodal stresses.

Fig. 26. von Mises stress distributions; all solutions are visualized interpolating the von Mises stress obtained using the averaged nodal stresses; (a) Reference solution; (b)
Solution calculated using the AMORE mesh; (c) Solution calculated using the traditional mesh.
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Fig. A1. Node numbering for the new pyramid and prism overlapping elements; we include the nodes only used for the interpolation of /I
K ; the actual physical nodes are 1 to

5 for the pyramid element and 1 to 6 for the prism element.

Table A1
Nodal values for the interpolation of /I

K of the 5-node pyramid overlapping element.

Nodes i = 1 2 3 4 5 6 7 8 9 10 11 12 13

/̂
1
1i

1 A A A

/̂
1
2i

1 B 0.5 0.5

/̂
1
3i

1 0.5 0.5 0.5

/̂
1
4i

1 0.5 B 0.5

/̂
1
5i

1 B 0.5 0.5 0.5

/̂
2
1i

1 B 0.5 0.5

/̂
2
2i

1 A A A

/̂
2
3i

1 B 0.5 0.5

/̂
2
4i

1 0.5 0.5 0.5

/̂
2
5i

1 0.5 B 0.5 0.5

/̂
3
1i

1 0.5 0.5 0.5

/̂
3
2i

1 0.5 B 0.5

/̂
3
3i

1 A A A

/̂
3
4i

1 B 0.5 0.5

/̂
3
5i

1 0.5 0.5 B 0.5

/̂
4
1i

1 0.5 B 0.5

/̂
4
2i

1 0.5 0.5 0.5

/̂
4
3i

1 0.5 B 0.5

/̂
4
4i

1 A A A

/̂
4
5i

1 0.5 0.5 0.5 B

/̂
5
1i

1 0.5 0.5 B

/̂
5
2i

1 0.5 0.5 B

/̂
5
3i

1 0.5 0.5 B

/̂
5
4i

1 0.5 0.5 B

/̂
5
5i

1 A A A A
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Appendix A1. Finite element shape functions used for pyramid
and prism overlapping elements.

Here we present the finite element shape functions used for the
formulations of the pyramid and prism overlapping elements.
The node numbering is shown in Fig. A1. Considering the new
pyramid overlapping element, we use for the 5-node element:

h1 ¼ 1
8 1� rð Þ 1� sð Þ 1� tð Þ

h2 ¼ 1
8 1þ rð Þ 1� sð Þ 1� tð Þ

h3 ¼ 1
8 1þ rð Þ 1þ sð Þ 1� tð Þ

h4 ¼ 1
8 1� rð Þ 1þ sð Þ 1� tð Þ

h5 ¼ tþ1
2

ðA:1Þ

and for the interpolation of /I
K

Table A2
Nodal values for the interpolation of /I

K of the 6-node prism overlapping element.

Nodes i = 1 2 3 4 5 6 7 8

/̂
1
1i

1 A

/̂
1
2i

1 B 0

/̂
1
3i

1 0

/̂
1
4i

1

/̂
1
5i

1

/̂
1
6i

1

/̂
2
1i

1 B

/̂
2
2i

1 A A

/̂
2
3i

1 B

/̂
2
4i

1

/̂
2
5i

1

/̂
2
6i

1

/̂
3
1i

1 0.5

/̂
3
2i

1 0.5 B

/̂
3
3i

1 A

/̂
3
4i

1

/̂
3
5i

1

/̂
3
6i

1

/̂
4
1i

1 0.5

/̂
4
2i

1 0.5 0

/̂
4
3i

1 0

/̂
4
4i

1

/̂
4
5i

1

/̂
4
6i

1

/̂
5
1i

1 0.5

/̂
5
2i

1 0.5 0

/̂
5
3i

1 0

/̂
5
4i

1

/̂
5
5i

1

/̂
5
6i

1

/̂
6
1i

1 0.5

/̂
6
2i

1 0.5 0

/̂
6
3i

1 0

/̂
6
4i

1

/̂
6
5i

1

/̂
6
6i

1
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ĥ1 ¼� 1� rð Þ 1� sð Þ 1� tð Þ 4þ3rþ3sþ2rsþ2tþ rtþ stþ2rstð Þ=16
ĥ2 ¼� 1þ rð Þ 1� sð Þ 1� tð Þ 4�3rþ3s�2rsþ2t� rtþ st�2rstð Þ=16
ĥ3 ¼� 1þ rð Þ 1þ sð Þ 1� tð Þ 4�3r�3sþ2rsþ2t� rt� stþ2rstð Þ=16
ĥ4 ¼� 1� rð Þ 1þ sð Þ 1� tð Þ 4þ3r�3s�2rsþ2tþ rt� st�2rstð Þ=16

ĥ5 ¼ t tþ1ð Þ=2
ĥ6 ¼ 1� r2

� �
1� sð Þ 1� tð Þ 2þ sþ stð Þ=8

ĥ7 ¼ 1� s2
� �

1þ rð Þ 1� tð Þ 2� r� rtð Þ=8
ĥ8 ¼ 1� r2

� �
1þ sð Þ 1� tð Þ 2� s� stð Þ=8

ĥ9 ¼ 1� s2
� �

1� rð Þ 1� tð Þ 2þ rþ rtð Þ=8
ĥ10 ¼ 1� t2

� �
1� sð Þ 1� rð Þ=4

ĥ11 ¼ 1� t2
� �

1� sð Þ 1þ rð Þ=4
ĥ12 ¼ 1� t2

� �
1þ sð Þ 1þ rð Þ=4

ĥ13 ¼ 1� t2
� �

1þ sð Þ 1� rð Þ=4
ðA:2Þ
9 10 11 12 13 14 15

A A

.5 0.5

.5 B 0.5

0.5 0.5 B

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5

A

0.5 0.5

0.5 0.5 0.5

0.5 0.5 B

0.5 0.5 0.5

B 0.5

0.5

A A

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 B

0.5 B

.5 0.5

.5 0.5 0.5

A A A

B 0.5 0.5

0.5 B 0.5

0.5 0.5

.5 B

.5 0.5 0.5

B 0.5 0.5

A A A

B 0.5 0.5

0.5 0.5

.5 0.5

.5 0.5 B

0.5 B 0.5

0.5 B 0.5

A A A
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For the 6-node prism overlapping element, we employ

h1 ¼ 1
2 1� r � sð Þ 1� tð Þ; h2 ¼ 1

2 r 1� tð Þ
h3 ¼ 1

2 s 1� tð Þ; h4 ¼ 1
2 1� r � sð Þ 1þ tð Þ

h5 ¼ 1
2 r 1þ tð Þ; h6 ¼ 1

2 s 1þ tð Þ
ðA:3Þ

and for the interpolation of /I
K

ĥ1 ¼ � 1� r � sð Þ 1� tð Þ r þ sþ t
2

� �
; ĥ2 ¼ r 1� tð Þ r � t

2 � 1
� �

ĥ3 ¼ s 1� tð Þ s� t
2 � 1

� �
; ĥ4 ¼ � 1� r � sð Þ 1þ tð Þ r þ s� t

2

� �
ĥ5 ¼ r 1þ tð Þ r þ t

2 � 1
� �

; ĥ6 ¼ s 1þ tð Þ sþ t
2 � 1

� �
ĥ7 ¼ 2r 1� r � sð Þ 1� tð Þ; ĥ8 ¼ 2rs 1� tð Þ

ĥ9 ¼ 2s 1� r � sð Þ 1� tð Þ; ĥ10 ¼ 2r 1� r � sð Þ 1þ tð Þ
ĥ11 ¼ 2rs 1þ tð Þ; ĥ12 ¼ 2s 1� r � sð Þ 1þ tð Þ

ĥ13 ¼ 1� r � sð Þ 1� t2
� �

; ĥ14 ¼ r 1� t2
� �

; ĥ15 ¼ s 1� t2
� �

ðA:4Þ
Appendix A2. Values of /̂
I
Ki for interpolating /I

K

The nodal values /̂
I

Ki to interpolate /I
K are given in Tables A1 and

A2. In the tables, A ¼ 0:5� b, B ¼ 0:5þ b, and a blank cell denotes
the value of zero. See Fig. A1 for the node numbering.
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